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In this paper we focus on the influence of passive elements on the collective dynamics of oscillatory
ensembles. Two major effects considered are �i� the influence of passive elements on the synchronization
properties of ensembles of coupled nonidentical oscillators and �ii� the influence of passive elements on the
wave dynamics of such systems. For the first effect, it is demonstrated that the introduction of passive elements
may lead to both an increase or decrease in the global synchronization threshold. For the second effect, it is
also demonstrated that the steady state of the passive element is a key parameter which defines how this
passive element affects the wave dynamics of the oscillatory ensemble. It was shown that for different values
of this parameter, one can observe increase or decrease in wave propagation velocity and increase or decrease
in synchronization frequency in oscillatory ensembles with the growth of influence of passive elements. The
results are obtained for the models of cardiac cells dynamics as well as for the Bonhoeffer–Van der Pol model
and are compared with data of real biological experiments.
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I. INTRODUCTION

The study of collective dynamical effects in systems of
coupled elements is one of the modern problems of many
branches of physics �1–4�. Lately various kinds of collective
behavior have been considered in systems with a nonhomo-
geneous distribution of parameters �5–7�. However, the pres-
ence of another type of inhomogeneity is characteristic for
many real systems. In �8�, for example, the role of heteroge-
neity in the emergence of global oscillations in the initially
excitable medium was discussed. Such systems consist of
elements having essentially different dynamics, namely, os-
cillatory and/or excitable and/or passive elements. In this
way, for example, the heart may be considered as a dynami-
cal system which is an ensemble consisting of such elements
�9,10�. The heart tissue is composed of cells of three major
types: pacemaker cells �pacemakers�, cardiomyocytes, and
fibroblasts that from the point of view of nonlinear dynamics
are oscillatory, excitable, and passive elements, respectively.
The main difference between these certain cell types is that
pacemakers are able to generate periodic oscillations of elec-
trical action potentials, while cardiomyocytes can only pro-
duce an action potential in response to the incoming stimu-
lus. Fibroblasts, in turn, do not generate action potentials
even in response to external excitation but just relax to the
steady state.

In this paper, the emphasis is put on the interaction be-
tween oscillatory and passive elements. In the heart such
kind of interaction is observed in the sinoatrial node that
consists of pacemakers and fibroblasts. The amount of the
latter cells in this region of the heart may come to 60–70 %
according to the physiological experiments �11�. Apart from
it, the total number of fibroblasts can vary in time due to the
heart tissue aging processes or various kinds of diseases. The
influence of these cells on the dynamics of the sinoatrial
node and the heart in general is the subject of many studies
based on biological experiments as well as numerical simu-
lations �12–15�. In these papers, many evidences are pre-

sented indicating that the presence of fibroblasts may affect
the synchronization properties of cells in the sinoatrial node,
as well as deeply influence the characteristics of wave pro-
cesses in the system, e.g., action potential conduction veloc-
ity. From the point of view of the heart functioning, this may
lead to the development of different arrhythmias. Numerical
simulations alongside with the use of nonlinear dynamics
methods allow to explain the dynamical origin of such ef-
fects and it proposes various ways of controlling them. That
is why the study of dynamics of mixed ensembles of oscil-
latory and passive elements is an important and acute task.

This paper is composed of two major parts. In the first
part, the influence of passive elements on synchronization
properties of oscillatory ensembles, namely, threshold and
frequency of synchronization, is observed. First, the results
of simulations with Bonhoeffer–Van der Pol oscillator �also
known as FitzHugh-Nagumo system� are presented and an
analytical description of the observed effects is given using
the model of phase oscillators. Very often �8,16� cells of
different types are described by phenomenological
Bonhoeffer–Van der Pol model with different parameters.
This is the simple but usually good enough approximation
because it reproduces oscillatory, excitable, or passive dy-
namics depending on the value of parameters. This model
also describes such characteristics of heart cells such as gen-
eration threshold, action potential, and others. Then we dis-
cuss results of simulations obtained using a biophysically
relevant model of cardiac cells and compare these results
with the data of real biological experiments.

In the second part of the paper, the influence of passive
elements on the wave dynamics of oscillatory ensembles is
discussed. Particularly, the accent is on the impact on the
amplitude, frequency, and velocity of action potential propa-
gation in the system of coupled cardiac cells. In this part of
the paper, the results of numerical simulations are presented
and compared with data of physiological research.
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II. INFLUENCE OF PASSIVE ELEMENTS ON
THE SYNCHRONIZATION PROPERTIES OF

OSCILLATORY ENSEMBLES

A. Dynamical regimes in pair: Oscillatory element
and passive element

In this section, the interaction between oscillatory and
passive Bonhoeffer–Van der Pol elements is studied. Isolated
oscillator is described by a system of two ordinary differen-
tial equations,

ẋ = x − x3/3 − y ,

ẏ = ��x + a − y� . �1�

In application to biological systems, x in Eq. �1� denotes the
action potential and y plays the role of the variables describ-
ing the ionic currents flowing through the membrane of a
cell. The parameter a is the control parameter. By varying
this parameter, one can observe different dynamical regimes
of isolated elements: oscillatory, excitable, and passive �16�.
This feature allows us to use this system as a simplified
version of biological cell model applicable to study the main
dynamical properties.

The curve of slow motions of the system �1� �nullcline:
y=x−x3 /3� is shown as a solid line in Fig. 1. Nullclines of
horizontal slopes y=x+a for different values of a are plotted
in Fig. 1 with dotted lines. For parameter range �a�
−8 /3�� �a�8 /3�, the system is passive. When −1 /3�a
�1 /3, the system is in oscillatory regime. For all other val-
ues of parameter a the system �1� exhibits excitable behavior.

Let us now consider a system consisting of two unidirec-
tionally coupled oscillatory and passive elements,

ẋo = xo − xo
3/3 − yo + d�xo − xp� ,

ẏo = ��xo + ao − yo� ,

ẋp = xp − xp
3/3 − yp,

ẏp = ��xp + ap − yp� . �2�

The parameters ao and ap in Eq. �2� were chosen in such a
way that the first and the second elements were in oscillatory
and passive regimes, respectively. The individual frequency
of the oscillatory element depends on value of ao. The term
d�xo−xp� describes the unidirectional influence of the passive
element on the oscillatory one.

Figure 2 illustrates the dependency of the oscillation fre-
quency � of the first Bonhoeffer–Van der Pol element on the
parameter of unidirectional coupling with the passive ele-
ment d for different values of parameter ao corresponding to
different individual frequencies of the oscillator.

It is clearly seen that every two curves in Fig. 2 have an
intersection point. That means that for two oscillatory
Bonhoeffer–Van der Pol elements with initially different in-
dividual frequencies, there exists such a coupling value d
with the passive element, when the effective frequency mis-
match will equal to zero. With the further growth of d, this
effective frequency mismatch increases. Thus, the influence
of a passive element changes the frequency of an oscillatory
element and therefore affects the synchronization properties
in such systems. Besides, it is worth saying that for some
critical coupling value d in this system, the effect of oscilla-
tory death is observed, i.e., vanishing of oscillations in the
initially oscillatory element. In order to describe this effect,
one can investigate the dependency of system �2� steady-
state coordinates and their stability on the coupling param-
eter d. Supposing right-hand side parts of the system being
zero, we can obtain the equation for the coordinate xo of the
steady state,

xo
3 + 3dxo + 3�ao − dxp

�� = 0, �3�

where xp
� =�33ap. Equation �3� has the only real root,
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FIG. 1. Regions of oscillatory, excitable, and passive behavior
of a Bonhoeffer–Van der Pol system. The solid line is the curve of
slow motions. Dotted lines, dividing the areas of different system
behavior, are nullclines of horizontal slopes for different values of
control parameter a1=8 /3, a2=1 /3, a3=−1 /3, a4=−8 /3.
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FIG. 2. Dependency of the oscillation frequency � of the oscil-
latory Bonhoeffer–Van der Pol element on the parameter of the
unidirectional coupling with a passive element d for different values
of the parameter ao. One can observe �i� a decrease in an effective
frequency mismatch between elements with initially different indi-
vidual frequencies caused by increasing the impact from the passive
element till a certain critical value of d; �ii� an increase in the
effective frequency mismatch between the elements; and �iii� van-
ishing of oscillations in the oscillatory element.
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xo
� =

1

2
�3 � −

2d

�3 �
, �4�

where

� = − 12�ao − dxp
�� + 4�4d3 + 9�ao − dxp

��2.

The stability of this steady state is defined by the roots �1,2 of
the following characteristic equation:

�2 + ��d + xo
�2

+ � − 1� + ��d + xo
�2

� = 0. �5�

Real and imaginary parts of the roots �1,2 of Eq. �5� depend-
ing on parameter d for fixed values ao=0.3, xp

� =2.5 are pre-
sented in Figs. 3�a� and 3�b�, respectively. The figure shows
that initially unstable focus �Re��1,2��0, Im��1,2��0, d
� �0,0.041�� with growth of d becomes at first an unstable
node �Re��1,2��0, Im��1,2�=0, d� �0.041,0.22�� and af-
ter that an unstable focus again. Then for d�0.29 the real
parts of the two complex-conjugate roots of the characteristic
Eq. �5� get equal to zero and become negative with a further
increase of d. Thereby, the steady state of system �2� acquires
stability via an Andronov-Hopf bifurcation. A more detailed
investigation shows that this bifurcation is subcritical and it
is accompanied with the birth of an unstable limit cycle.
Finally, for d�0.298 the stable and unstable limit cycles
merge and disappear via a saddle-node limit cycle bifurca-
tion. After that, the oscillations in system �2� die out.

Apart from it, it is also worth saying that almost the op-
posite effect may take place in this system for other values of
parameters. It was shown in �8� that introduction of diversity,
i.e., parameter mismatch, in the initially homogeneous excit-

able medium of Bonhoeffer–Van der Pol elements leads to
the emergence of global oscillations with the growth of cou-
pling between oscillators.

B. Synchronization of two oscillatory Bonhoeffer–Van der Pol
elements under the influence of a passive element

Let us now proceed to the study of the influence of a
passive element on the threshold and frequency of synchro-
nization. Consider the system of three coupled Bonhoeffer–
Van der Pol elements,

ẋo1 = xo1 − xo1
3 /3 − yo1 + d1�xo2 − xo1� + d2�xp − xo1� ,

ẏo1 = ��xo1 + ao1 − yo1� ,

ẋo2 = xo2 − xo2
3 /3 − yo2 + d1�xo1 − xo2� + d2�xp − xo2� ,

ẏo2 = ��xo2 + ao2 − yo2� ,

ẋp = xp − xp
3/3 − yp,

ẏp = ��xp + ap − yp� . �6�

Let the first two elements be oscillatory with different
individual frequencies. To be more concrete, let us consider
ao1=0.31 and ao2=0.25. Coefficients d1 and d2 describe the
interaction between the oscillatory elements and the unidi-
rectional impact from the passive element on them, respec-
tively. As far as in this situation the limit case of unidirec-
tional coupling is observed, the passive element is in its
steady state xp=xp

�. Parameter ap was chosen in simulations
such that xp

� =2.5.
Figure 4�a� demonstrates the synchronization threshold d1

s

tuning coupling with passive element d2. It is seen that with
an increasing influence of the passive element on the oscil-
latory ones, a significant lowering of the synchronization
threshold d1

s takes place. At d1
s �0.11 it almost reaches zero.

Then the value of the synchronization threshold starts to in-
crease back again and, starting from a certain value of d2
�0.25, even exceeds the initial value that was observed in
the case of no coupling with passive element �d2=0�. Hence
the introduction of a passive element may lead to both a
decrease and increase in the synchronization threshold due to
a decrease or increase in the effective frequency mismatch
between the oscillatory elements, respectively. Notice that
when the influence of the passive element is too large �d2
�0.28� then the effect of oscillation death takes place.

Figure 4�b� illustrates the dependency of the synchroniza-
tion frequency �s on the parameter d2. Comparing this curve
with the ones in Fig. 2, one can state that the synchronization
frequency increases with growth of d2 for almost the same
values of d2 when the frequency of the single element in-
creases with enlarging the coupling to the passive element
and vice versa. In other words, the character of the curve in
Fig. 4�b� is defined mainly by the kind of dependency of the
frequency of the single oscillatory element on the coupling
with the passive element �Fig. 2�. The analytical description
of these effects is given in Sec. II C.
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FIG. 3. �a� Real and �b� imaginary parts of the roots �1,2 of Eq.
�5� depending on parameter d for fixed values ao=0.3, xp

� =2.5.
Due to the subcritical Andronov-Hopf bifurcation the steady state of
the system �2� acquires stability for d�0.29.
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C. Analytical description based on the model
of coupled phase oscillators

In this section the analytical description of the effects de-
scribed above is given. According to the Malkin’s theorem
�17�, a phase model of a chain of locally and weakly coupled
nonidentical periodic oscillators can be generally written as

�̇ j = � j + �h�� j−1 − � j� + �h�� j+1 − � j� , �7�

where j=1, . . . ,N, N is the number of oscillators, � j are the
individual frequencies, � characterizes coupling, and h is a
2	-periodic coupling function. In our case, numerical ex-
periments demonstrated that it is possible to choose the h
function as a sinus in the first approximation. Let us consider
the system of two coupled periodic oscillators with different
individual frequencies. According to Eq. �7� the phase dy-
namics of the system can be written as follows:


̇1 = �1�d2� + d1 sin�
2 − 
1� ,


̇2 = �2�d2� + d1 sin�
1 − 
2� . �8�

Here the term including coefficient d1 describes the coupling
between oscillatory elements while the influence of the pas-
sive element on this system is represented by two dependen-
cies of frequencies of phase oscillators �1�d2� and �2�d2� on
some parameter d2 that characterizes the degree of the pas-
sive element impact. In case of d1=0 and d2=0, the system
�8� describes two oscillatory elements with different indi-
vidual frequencies �1�0� and �2�0�. For dependencies �1�d2�
and �2�d2�, we use the polynomial approximations of analo-

gous curves obtained for the Bonhoeffer–Van der Pol model
�Fig. 2� for the parameter values ao=0.3 and ao=0.25. An
approximation of these curves using a third order polynomial
gives

�1�d2� = − 0.13d2
3 − 0.024d2

2 + 0.02d2 + 0.007 7,

�2�d2� = 0.021d2
3 − 0.079d2

2 + 0.028d2 + 0.007 3. �9�

Let us come now from the system �8� to the equation for
phase differences,

�̇ = �2�d2� − �1�d2� − 2d1 sin��� , �10�

where �=
2−
1. The criterion of synchronization in this
case involves the existence and stability of a steady state,

�̄ = arcsin
�2�d2� − �1�d2�

2
, �11�

for system �10� that is ensured by the fulfillment of the in-
equality,

d1 �
�2�d2� − �1�d2�

2
. �12�

It is easy to show also that the synchronization frequency �s
in this case is defined by the equation,

�s =
�2�d2� + �1�d2�

2
. �13�

Analytical curves for the synchronization threshold d1�d2�
and the synchronization frequency �s�d2� obtained according
to the Eqs. �12� and �13� are shown in Figs. 5�a� and 5�b�,
respectively.

These curves very well match the results of the numerical
simulations with a Bonhoeffer–Van der Pol model and
may—in an analytical way—support the claim that the intro-
duction of a passive element can lead to a decrease or in-
crease in the synchronization threshold.

III. SYNCHRONIZATION OF CARDIOMYOCYTES
UNDER THE FIBROBLASTS IMPACT

In the current section and in Secs. III–V, we present re-
sults obtained using the model of cardiac cell dynamics. In
Sec. I it has already been noticed that the heart consists of
cells of different types. Among them one can single out os-
cillatory cardiac cells �pacemakers� and passive cardiac cells
�fibroblasts�. Further, for convenience in description, the bio-
logical terms pacemaker �fibroblast� and nonlinear dynamics
oscillatory �passive� cell are considered as synonyms.

A. Cardiac cells models

In the numerical experiments, biologically relevant mod-
els describing electrical activity of cardiac cells were used.
As a model of oscillatory cardiac cell �pacemaker�, we use
the Luo-Rudy phase 1 model �18�. This is the Hodgkin-
Huxley-type model �19� consisting of eight nonlinear differ-
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FIG. 4. Influence of a passive element on the synchronization
properties of two coupled Bonhoeffer–Van der Pol oscillators: �a�
dependency of the synchronization threshold d1

s on coupling with a
passive element d2; �b� dependency of the synchronization fre-
quency on the coupling parameter d2.
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ential equations. The first equation describes the action po-
tential V rate of change,

Cm
dV

dt
= − �Iion + Iext� , �14�

where V denotes the cell membrane voltage measured in mil-
livolts, Cm=1 �F /cm2 is the membrane capacity. The time
unit of the model is 1 ms. Iext is a constant external electrical
stimulus and Iion is a sum of six ionic currents flowing
through the membrane,

Iion = INa + Isi + IK + IK1 + IKp + Ib, �15�

where INa is a sodium current, Isi is the slow inward calcium
current, IK is potassium current, IK1 is stationary potassium
current, IKp is plateau potassium current, and Ib is a back-
ground current. These currents are measured in �A /cm2 and
defined by

INa = GNam
3hj�V − ENa� ,

Isi = Gsidf�V − Esi�V,c�� ,

IK = GKxxi�V��V − EK� ,

IK1
= GK1k1i�V��V − EK1� ,

IKp
= GKpkp�V��V − EK1� ,

IB = Gb�V − Eb� . �16�

Here Gq and Eq for q� �Na,si ,K,K1,Kp ,b� denote, respec-
tively, the maximal conductance and the reversal potential of

the corresponding ionic current. Each of the gating variables
gi� �m ,h , j ,d , f ,x�, i=1, . . . ,6 is described by the ordinary
differential equation as follows:

ġi = �gi
�V��1 − gi� − gi

�V�gi. �17�

Nonlinear functions �gi
�V� and gi

�V� as well as Esi�V ,c�,
xi�V�, K1i�V�, and Kp�V� are fitted to the experimental data
�18�. The dynamics of the external concentration of calcium
ions is given by the first-order differential equation,

ċ = 10−4Isi�V,d, f ,c� + 0.07�10−4 − c� . �18�

In this system, we emphasize two control parameters: Iext

and GK1. The variation of these parameters allows to change
the dynamics of the isolated Luo-Rudy element from the
excitable regime to the oscillatory and vice versa. There are
two ways to obtain self-oscillations in the system using these
control parameters.

�i� For the standard value of parameter GK1=0.604 7, the
value of parameter Iext is varied. The parameters GK and Gsi
in this case are also different from their original values and
equal to 0.705 and 0.07, respectively. It is done in order to
approximate the action potential duration �APD� generated
by such a system to the APD of the human heart �20�. Fur-
ther we will call such a system an oscillatory Luo-Rudy el-
ement of the first type.

�ii� For the standard value of parameter Iext=0, the value
of parameter GK1 is varied �21�. In the sequel, we will call
such a system an oscillatory Luo-Rudy element of the second
type.

These two types of oscillatory Luo-Rudy elements dem-
onstrate different bifurcations leading to transition from ex-
citable to oscillatory regime and vice versa. It is shown fur-
ther in the paper that these differences between the two types
of oscillatory Luo-Rudy elements play an important role in
the interaction of them with passive elements.

As a model of fibroblast, we use the Kohl �22� model of a
passive cardiac cell. This system is described by the simple
first-order linear differential equation,

V̇F = −
1

CF
GF�VF − Erest� . �19�

The key parameter here is Erest which is the resting potential
of fibroblast that may vary in the range from −60 to
−10 mV. In the second part of the paper, it is demonstrated
that fibroblasts with different values of Erest influence the
wave dynamics of coupled oscillatory cardiac cells in differ-
ent ways.

Let us now briefly discuss the bifurcations that lead to the
change in the dynamical behavior in the Luo-Rudy oscilla-
tory elements of the first and the second types from excitable
to oscillatory and vice versa. Figure 6�a� illustrates the de-
pendency of the oscillation amplitude A of the first type Luo-
Rudy element on the parameter Iext for the isolated element
and for the element under the influence of fibroblast with
Erest=−40 and −20 mV. When Iext=0 the element is in ex-
citable regime. For the value Iext�−2.21, in the phase space
of the system a stable limit cycle occurs via the saddle-node
bifurcation on invariant curve and the element starts to dem-
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FIG. 5. Analytical curves for �a� synchronization threshold
d1�d2� and �b� synchronization frequency �s�d2� obtained according
to the analytical equations for the system of coupled phase
oscillators.
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onstrate periodic behavior. A further decrease of Iext up to −4
leads to a reduction in the oscillation amplitude A. For Iext

�−4.04 the stable limit cycle corresponding to the self-
oscillations in the element disappears due to saddle-node
limit cycle bifurcation. Thus, the element comes back again
to the excitable regime �16�. Introduction of fibroblasts in
this system affects only the second bifurcation that provides
the disappearance of the stable limit cycle. The analysis of
the matrix eigenvalues of the linearization in the steady state
proves that in this case it is caused by a supercritical
Andronov-Hopf bifurcation accompanied with merging of
the stable limit cycle into the steady state �Fig. 6�a��.

In Fig. 6�b� the dependency of the oscillation amplitude A
of the second type Luo-Rudy element on the parameter Iext is
presented for the isolated element and for the element under
the influence of fibroblast with Erest=−60 mV. For physi-
cally relevant values of the parameter GK1�0, one can ob-
serve here a transition from oscillatory to excitable regime
when GK1�0.08 for the isolated element. Let us consider a
little more detailed the bifurcation that provides this effect. It
was ascertained that in the system having initially the only
steady state of a saddle type, the saddle-node bifurcation
takes place for GK1=0.06. As a result, two more steady states
appear. With a further increase in control parameter up to
GK1=0.074, one of the steady states acquires stability via an
Andronov-Hopf bifurcation that is proved by the analysis of
the roots of the corresponding characteristic equation. This

bifurcation is subcritical and it is accompanied with the birth
of an unstable limit cycle. This fact is indicated by the exis-
tence of bistability in the system, i.e., coexistence of a stable
limit cycle with a stable steady state in the phase space.
Figure 7 shows the projection of stable and unstable limit
cycles as well as stable steady state into the coordinate plane
�V ,X� for GK1=0.074 5. Then the stable and unstable limit
cycles merge and disappear via a saddle-node limit cycle
bifurcation for GK1=0.074 52. Notice that beforehand the
stable limit cycle is changing its form, as shown in Fig. 7. In
particular one can observe subthreshold oscillations of low
amplitude. The time series corresponding to that stable limit
cycle is presented in the upper inset in Fig. 7. The parameter
range of GK1, when such subthreshold oscillations are ob-
served, may be estimated by the insets in Fig. 6�b�. Here the
small values of amplitude A correspond to low amplitude
subthreshold oscillations.

B. Fibroblast impact on the oscillatory cardiac cell dynamics

As demonstrated in Secs. II A and II B using the
Bonhoeffer–Van der Pol model, it is possible to judge quali-
tatively the influence of a passive element on the synchroni-
zation properties in oscillatory ensembles from the character
of the dependency of the single oscillatory element fre-
quency on the coupling with a passive element �Fig. 2�. So,
in order to understand if it is possible to obtain effects such
as those that were observed in Secs. II A and II B, but in the
case of coupled cardiac cells, the dependencies of frequency
of single pacemaker on the coupling with fibroblast d were
obtained. Figures 8�a� and 8�b� show the curves for the os-
cillatory Luo-Rudy element of the first type under the unidi-
rectional fibroblast influence with Erest=−60 mV �a� and
Erest=−20 mV �b� for different values of parameter Iext, i.e.,
for different individual frequencies of pacemaker. It is
clearly seen that introduction of fibroblast with any resting
potential within the range Erest� �−60,−20� mV leads to a
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decrease in the effective frequency mismatch and increase in
the pacemaker frequency. The value of Erest in this case af-
fects just the degree of the effects development.

Another situation is observed for the oscillatory Luo-
Rudy element of the second type. Analogous frequency de-
pendencies are presented in Figs. 8�c� and 8�d�. One can
observe here that the influence of fibroblast with Erest=
−20 mV results in a decrease in the effective frequency mis-
match as well as a significant increase in the oscillation fre-
quency �Fig. 8�d��, while the impact of passive element with
Erest=−60 mV appears to be right opposite �Fig. 8�c��. It is
also worth noticing that there is such a threshold value of
Erest�−45 mV when no significant change of neither the
frequency mismatch nor the pacemaker oscillation frequency
can be observed. The last important point here is that in all
considered cases there exists some critical value of the cou-
pling with fibroblast starting from which the oscillations in
the systems vanish. In other words the effect of oscillatory
death �16� takes place here like it was also observed with
Bonhoeffer–Van der Pol elements.

Thus, analyzing the dependencies in Fig. 8 one can sup-
pose that it is possible to obtain synchronization of two dif-
ferent oscillatory cardiac cells due to the fibroblast impact. In
the case of oscillatory Luo-Rudy element of the first type, it
is possible for any values �from the range observed� of fibro-
blast resting potential. For the second type Luo-Rudy ele-
ment, it is only possible for Erest�−45 mV. The numerical
simulations results confirming this fact are presented in Sec.
III C.

C. Synchronization of two pacemakers due to the fibroblast

In this section, the results of numerical simulations of the
system of three coupled elements �Fig. 9� are presented. Let
us consider two coupled pacemakers �in Fig. 9 they are pre-
sented with white color and letter “P”� under the fibroblast
influence �in Fig. 9 it is presented with gray color and letter
“F”�. Let us also consider three new parameters dpp ,dfp ,dpf
denoting, respectively, �i� symmetrical diffusive coupling be-
tween oscillatory elements, �ii� the coupling directed from
fibroblast to pacemakers, and �iii� the coupling directed from
pacemaker to fibroblast.

Figures 10�a� and 10�b� show the dependency of frequen-
cies of two pacemakers on coupling with fibroblast dfp for
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FIG. 8. The curves of dependency of the single pacemaker fre-
quency on the coupling with fibroblast: ��a� and �b�� the curves for
oscillatory Luo-Rudy element of the first type for different values of
parameter Iext and resting potential of fibroblast �a� Erest=−60 mV
and �b� Erest=−20 mV; ��c� and �d�� the curves for oscillatory Luo-
Rudy element of the second type for different values of parameter
GK1 and resting potential of fibroblast �c� Erest=−60 mV and �d�
Erest=−20 mV.

FIG. 9. The topology of the investigated system of three ele-
ments. Pacemakers are presented with white color and letter “P.”
The fibroblast is presented with gray color and letter “F.” The pa-
rameters dpp ,dfp ,dpf are the coefficients of diffusive coupling be-
tween elements.
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the cases when the pacemakers are oscillatory Luo-Rudy el-
ements of the first �Fig. 10�a�� and second �Fig. 10�b�� types.
In both cases, the resting potential of fibroblast Erest was
equal to −30 mV and coupling parameters are �a� dpp
=0.000 5, dpf =0; �b� dpp=0.001, dpf =0. Hence, we deal with
the limit case of the unidirectional coupling. The control pa-
rameters defining individual frequencies are �a� I1

ext=−2.3,
I2

ext=−2.4; �b� GK1
1 =0; GK1

2 =0.06. It is seen from Fig. 10
that the increase in coupling from fibroblasts leads to the
convergence of individual pacemakers frequencies and for
the chosen parameters in both cases the regime of synchro-
nization of two pacemakers sets in starting from some criti-
cal value dfp. With further increase of dfp, the effect of os-
cillation death also takes place. Apart from it, Fig. 10�c�

shows the same dependency as one in Fig. 10�a� but for the
value of fibroblast resting potential Erest=−60 mV. In this
case the regime of synchronization between pacemakers can-
not be achieved because the influence of fibroblast with
Erest=−60 mV does not provide convergence of individual
frequencies of pacemakers. This fact confirms that the steady
state of passive element �resting potential of fibroblast� is an
important parameter defining whether it is possible to obtain
synchronization or not. Thus, the results of numerical simu-
lations support the preliminary qualitative analysis given in
Sec. III B.

D. Synchronization in large oscillatory ensembles

As far as many real systems are distributed ensembles of
a large number of coupled elements, in order to demonstrate
the generality of the effects obtained earlier, we performed a
set of numerical experiments with the systems composed of a
large number of oscillators. The concrete topology of the
studied system is shown in Fig. 11.

This topology is two two-dimensional lattices of 200
�200 elements located one above the other. The lower lat-
tice consists of oscillatory Luo-Rudy elements of the first
type with a random distribution for the control parameter
Ii

ext� �−2.4,−2.3� defining individual frequencies of pace-
makers. The upper lattice is composed of identical fibroblasts
with resting potential Erest=−40 mV. The coupling between
the elements of each lattice is the diffusive coupling with
four nearest neighbors. The coupling between lattices is or-
ganized in such a way that each element of one lattice is
coupled with five nearest elements of the other lattice �Fig.
11�. The boundary conditions in each lattice are zero flux.
This topology is an approximation to the real sinoatrial node
consisting of mixed oscillatory and passive cells. Like it was
done earlier in Sec. III C, let us introduce coupling coeffi-
cients dpp=0.000 1, dpf =0. The coefficient dfp is varied. Let
us also introduce a new coefficient df f =0.3 describing the
coupling strength between fibroblasts in the upper lattice. In
the numerical experiments, for each value of parameter dfp,
the average oscillation frequencies of all oscillatory elements
of the lower lattice were calculated.

The results of these calculations are presented in Fig. 12.
Here the ordinate axis shows the frequencies of each oscil-
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FIG. 10. The dependency of frequencies of two pacemakers on
the coupling with fibroblast dfp for the cases when the pacemakers
are �a� oscillatory Luo-Rudy elements of the first type and �b� os-
cillatory Luo-Rudy elements of the second type. In both cases, the
fibroblast resting potential is Erest=−30 mV. One can observe that
the synchronization sets in with increase of dfp. �c� The dependency
of frequencies of two pacemakers on the coupling with fibroblast
dfp for oscillatory Luo-Rudy elements of the first type and for fi-
broblast resting potential Erest=−60 mV. No synchronization can
be observed here.

FIG. 11. The topology of the studied system: two two-
dimensional lattices of 200�200 elements located one above the
other. White colored circles denote pacemakers; gray colored circles
denote fibroblasts.
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latory element in the lower lattice and abscissa axis shows
the coupling of these elements with fibroblasts dfp. The three
insets in Fig. 12 illustrate the frequency distribution of the
number of oscillatory elements N���� for three fixed values
dfp� �0;0.000 6;0.005�. In other words N����� is the num-
ber of pacemakers oscillating with the frequency ��. It is
seen from the figure that initially for dfp=0 the oscillation
frequencies in the lower lattice are distributed randomly and
uniformly in the range from 0.85 to 1.03 Hz �see correspond-
ing inset in Fig. 12�. This indicates that there is no synchro-
nization in the system. With the increase in fibroblast impact
dfp, the range of the observed frequencies significantly nar-
rows and for dfp=0.000 6 is about �0.99,1.11� Hz. At the
same time, the significant peak appears in the distribution N�

�inset dfp=0.000 6 in Fig. 12�. Thus more elements become
to oscillate with the same frequency indicating that synchro-
nization starts to set in. Finally, for high enough values of
dfp, the regime of complete synchronization takes place in
the system. So, for example, for dfp=0.005 one can see that
the distribution N� is nothing but narrow and highly peaked,
corresponding to a synchronization regime. Notice that with
the increase in the impact from fibroblasts on pacemakers,
the average frequency of oscillations also increases as it was
in the experiments in Sec. III C. Apart from it, like in Secs.
III A–III C, the effect of oscillatory death can also be ob-
served here starting from the value d�0.005. Thus, in this
section we demonstrated the possibility of the synchroniza-
tion regime onset in the large oscillatory ensemble due to the
coupling of oscillatory elements with passive ones.

In order to compare the obtained results with real biologi-
cal experiments one may turn, for example, to the paper �16�.
There the results of real biological experiments with cardiac
cells cultures composed of pacemakers and fibroblasts are
presented. It is shown in �16� that with the increase in cou-
pling of pacemakers with fibroblasts in the culture of oscil-
latory cardiac cells, the regime of synchronization sets in;
moreover it is accompanied with the growth of the average
oscillation frequency in the system. Thus, the results ob-

tained in numerical and analytical studies find their confir-
mation in nature.

IV. INFLUENCE OF PASSIVE ELEMENTS ON THE WAVE
DYNAMICS OF OSCILLATORY ENSEMBLES

In this section we present the investigation results of pas-
sive elements influence on characteristics of wave dynamics
of oscillatory ensembles such as �i� conduction velocity, �ii�
frequency, and �iii� amplitude. All the results are discussed in
the context of cardiac cultures dynamics. However, they can
be generalized to the case of interaction of any oscillatory
and passive elements. This part of the paper consists of three
sections: �i� in Sec. IV A we give the motivation of this
research and motivation of selection of the models for nu-
merical experiments, �ii� in Sec. IV B the results of the study
of one-dimensional ensembles are presented, and �iii� in Sec.
IV C these results are extended and generalized for two-
dimensional systems.

A. Biological experiments: Problem statement

As a problem statement and a motivation of our following
research, we use the results of real biological experiments
performed with the cultures of cardiac cells and presented in
�23�. In this work, the influence of fibroblasts on such char-
acteristics of collective dynamics of oscillatory cardiac cells
as conduction velocity, frequency, and amplitude of oscilla-
tions is observed. During the experiments, it was discovered
that an increase in the number of fibroblasts in the system
leads to the �i� decrease in action potential wave propagation
velocity �i.e., increase in propagation delay�, �ii� decrease in
amplitude of the wave, and �iii� decrease in the average os-
cillation frequency of pacemakers. The last result allows us
to define which model to use in numerical experiments. As
the model of oscillatory Luo-Rudy element of the first type
under the influence of fibroblast with any resting potential
Erest demonstrates the increase in the average oscillation fre-
quency of single element then it cannot be used to describe
effects presented in �23�. On the contrary for the oscillatory
Luo-Rudy element of the second type, one can observe both
an increase and decrease in the oscillation frequency of pace-
maker interacting with fibroblast in dependency on the rest-
ing potential. That is why this system was chosen for simu-
lations. It is also worth saying that the results presented in
�23� differ from the data described in �16�. There is a suppo-
sition that these differences take place because of using of
fibroblast with different values of Erest. In Sec. IV B the re-
sults of fibroblasts influence on the wave dynamics in one-
dimensional oscillatory ensemble are presented.

B. Influence of fibroblasts on the wave dynamics of oscillatory
elements: One-dimensional case

In this section, we present the results of study of the fi-
broblast influence on the wave propagation delay Td which is
inverse proportion to wave conductance velocity, wave am-
plitude A, and average oscillation frequency � in a one-
dimensional oscillatory ensemble of coupled cardiac cells,
i.e., in a chain of pacemakers. The structure of the system in
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question is shown in Fig. 13. This system consists of two
one-dimensional chains of 100 elements located parallel to
each other. One chain consists of Luo-Rudy elements of the
second type with the parameter GK1 �that defines individual
frequencies of pacemakers� distributed in such a way that for
the fixed value of coupling parameter dpp=0.02 and no cou-
pling with fibroblasts in this chain, the regime of global syn-
chronization sets in corresponding to the impulse propagat-
ing along the structure from the first element to the last one.
In particular, GK1

i =GK1
1 + i�, i=1,N, where GK1

1 =0, �
=0.000 6. The second chain is composed of identical fibro-
blast with resting potential Erest which is being chosen dif-
ferent from one experiment to another. The coupling coeffi-
cient between fibroblasts df f in every case equals 0.1.

The purpose of these experiments was to obtain the de-
pendencies of various wave processes characteristics
�Td ,A ,�� in the system on coupling parameter dfp and in
this case the coupling was unidirectional at that, i.e., dpf =0.
It is worth reminding that in biological experiments �23�,
these characteristics were investigated depending on the
number of fibroblasts. Nevertheless, in the case of identical
passive cells and unidirectional coupling from fibroblasts to
pacemakers, the variation in the whole number of fibroblasts
is equivalent to the variation of parameter dfp. In the limit
cases dfp=0 or dfp=1, there are no fibroblasts in the system
or their number equals the number of pacemakers, respec-
tively.

Figure 14�a� demonstrates the dependency of wave propa-
gation delay Td on coupling with fibroblasts dfp for different
values of resting potential Erest. One can see that for the
values of Erest equal to −60 and −50 mV the delay time Td
significantly increases with growth of dfp. So, for example,
for Erest=−60 mV the delay for dfp=0.011 is increased by
about 83% in comparison to the initial value for dfp=0. For
much higher fibroblast resting potentials −20 and −10 mV
the opposite situation is observed. For Erest=−20 mV, for
example, the delay Td decreases from 4200 to 2100 ms while
dfp increases from 0 to 0.009. For the intermediate values of
Erest �e.g., 30 mV�, the value of propagation delay almost
does not change.

Within the bounds of the stated problem other character-
istics of collective dynamics of the system in question were
also considered. Figure 14 also illustrates the dependencies
of the synchronization frequency in the chain � �Fig. 14�b��
and wave amplitude A �Fig. 14�c�� on the parameter dfp. It is
seen from Fig. 14�c� that with the increase in fibroblast in-
fluence on pacemakers, the amplitude A decreases regardless
of the value of the resting potential Erest of the passive ele-
ments. This can be explained as follows. The growth of dfp

brings the system closer to the supercritical Andronov-Hopf
bifurcation accompanied with the merging of the stable limit
cycle into the steady state and eventually leading to the oc-
currence of the oscillatory death effect. One can see from
Fig. 14�b� that the synchronization frequency of the chain
depending on coupling parameter dfp behaves differently for
different Erest. So, for Erest=−30, −20, and −10 mV � sig-
nificantly increases with growth of dfp while for Erest=−60

FIG. 13. Topology of the studied system: two one-dimensional
chains of 100 elements located parallel to each other. White colored
circles denote pacemakers; gray colored circles denote fibroblasts.
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FIG. 14. �a� The dependency of wave propagation delay Td on
coupling with fibroblasts dfp for different values of the resting po-
tential Erest. For Erest=−60 and −50 mV, one can observe a signifi-
cant increase in wave propagation delay while for Erest=−10 and
−20 mV the delay appreciably decreases. For the intermediate val-
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velocity seems not to be significant. The dependencies of �b� the
synchronization frequency in the chain � and �c� the wave ampli-
tude A on the coupling with fibroblasts dfp for different values of
the resting potential Erest. For Erest=−6 and −50 mV the synchro-
nization frequency in the chain decreases with growth of dfp while
for Erest=−10, −20, and −30 mV � significantly increases. In all
cases, the wave amplitude significantly decreases with growth of
dfp.
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and −50 mV the synchronization frequency decreases. The
qualitative explanation of this effect is that for single Luo-
Rudy element of the second type being under the fibroblast
impact, the oscillation frequency �i� increases for Erest�
−40 mV and �ii� decreases for Erest�−40 mV �16�.

For more clearness in Figs. 15�a� and 15�b� two spa-
tiotemporal diagrams of the processes are presented for
Erest=−60 mV and for values of the coupling dfp
� �0,0.011�, respectively. In these diagrams, the color corre-
sponds to the value of oscillatory elements voltage, the slope
of propagating wave fronts illustrates the delay Td, and the
time period of two consequent wave fronts characterizes the
oscillation period, i.e., this time period is in inverse propor-
tion to the synchronization frequency. Comparing these two
diagrams with each other, one can clearly see �i� the increase
in the wave propagation delay Td, �ii� the increase in the
pulse repetition period, i.e., the decrease in the synchroniza-
tion frequency, and �iii� the decrease in the wave amplitude
with growth of dfp.

In order to explain qualitatively the observed effect, let us
compare the obtained results with the dependencies of fre-
quencies of a single oscillatory Luo-Rudy element of the
second type being under the impact of fibroblast, which are
presented in Figs. 8�a� and 8�b� in Sec. III B. As it was dis-
cussed earlier, the influence of fibroblast with the resting
potential Erest=−60 mV leads to an increase in the effective
frequency mismatch between pacemakers �Fig. 8�a�� while
the impact of a passive element with Erest=−20 diminishes
this mismatch �Fig. 8�b��. Comparing Figs. 14, 8�a�, and 8�b�
one can make an assumption that a decrease or increase in
the effective frequency mismatch between the elements of
the chain of oscillatory cardiac cells due to the fibroblasts
impact leads, respectively, to the an increase or decrease in
the wave propagation delay Td in this system.

Thus, analyzing the obtained results one can conclude that
in cases Erest=−60 and −50 mV the observed system dem-
onstrates a qualitative agreement with data of biological ex-
periments. Particularly, in this system, such as in the real
experiments, one can observe �i� an increase in wave-front
propagation delay, �ii� the decrease in the synchronization
frequency, and �iii� the decrease in the wave amplitude with
the growing influence from the fibroblasts to the oscillatory
cardiac cells ensemble.

C. Two-dimensional case

In Sec. IV B we considered the influence of fibroblasts on
oscillatory cardiac ensembles in the one-dimensional case.
However, for generality and completeness of the paper, the
two-dimensional case of the same problem should also be
considered because this is a more adequate approach with
respect to the real experiments �23� where cardiac cells cul-
tures placed into the Petri dish are two-dimensional struc-
tures. Let us consider a two-dimensional lattice of 100
�100 elements composed of passive cells and oscillatory
Luo-Rudy elements of the second type with a random distri-
bution of the parameter GK1 in the range �0.04, 0.06�. Be-
sides, in one corner of the lattice we organized an area of
10�10 elements with GK1=0, i.e., the elements with indi-
vidual frequencies being higher than all the other individual
frequencies in the system. It was done in order to obtain a
regime of global synchronization in the lattice presented with
a concentric wave propagating from the corner. In this case,
it is easy to calculate the delays of wave propagation in the
system. The introduction of passive elements is equivalent to
the random replacement of oscillatory cells of the lattice by
fibroblasts with Erest=−60 mV except 100 special cells �dis-
cussed above� in the corner providing synchronization in the
system. In this case, the wave propagation delays are calcu-
lated for a different percentage of fibroblasts in the lattice
and for fixed coupling parameters dpp=0.2, df f =0.1 and
dfp=0.008, dpf =0. The case dpf =0 is the limit case of uni-
directional coupling from fibroblasts to pacemakers and it
does not correspond to the real situation. Therefore the cases
dpf =0.1,0.3 were observed as well.

Figure 16 shows the dependencies of the delay Td of con-
centric wave propagation from the one corner of the lattice to
the opposite one on the relation of the number of fibroblasts
in the lattice NF to the whole number of elements in the
system N for different values of the coupling from pacemak-
ers to fibroblasts dpf � �0,0.1,0.3�. One can clearly see that
in all observed cases the increasing number of passive ele-
ments in the lattice leads to the increase in the wave propa-
gation delay that is in agreement with the results presented
earlier. Apart from it, the introduction of the inverse influ-
ence from pacemakers to fibroblasts �dpf �0� diminishes the
impact of the passive elements, namely, for dpf =0.1,0.3 the
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slope of the curves in Fig. 16 is less than for dpf =0. In other
words, for every dfp the delay Td in these cases is less than
for dpf =0.

It is also worth noticing that all the curves in Fig. 16 are
bounded from the right by some critical value of NF /N.
Starting form this value, the inhomogeneity in the system
defined by fibroblasts becomes large enough for the concen-
tric wave propagating from the corner of the lattice to break
up into spiral waves. In that case, there is no point of speak-
ing about propagation delays. Figure 17 illustrates the snap-
shots of voltage of the lattice in case of dpf =0 for four values
NF /N� �0,0.075,0.15,0.2�.

The figure shows that an initially smooth concentric wave
front becomes more inhomogeneous �12� with the increase in
fibroblasts number �Figs. 17�a�–17�c�� and completely brakes
up into spiral waves for NF /N=0.2 �Fig. 17�d��. In this case
the areas of fibroblasts in the lattice form the obstacles large
enough to make the concentric wave front to collapse. Thus,
the results of numerical experiments with two-dimensional
systems demonstrate a good agreement with the data of bio-
logical research as well as with analytical estimations.

V. CONCLUSIONS

In this paper the influence of passive elements on the
collective dynamics of oscillatory ensembles was considered.

The emphasis is put on two major effects: �i� the influence of
passive elements on the synchronization properties of en-
sembles of coupled nonidentical oscillatory elements and �ii�
the influence of passive elements on the wave dynamics of
such systems.

With the use of numerical experiments as well as analyti-
cal results, it was shown that the introduction of passive
elements may lead to both an increase and decrease in the
effective frequency mismatch between oscillatory elements.
It was also demonstrated that in order to predict qualitatively
the possibility of this effect occurrence, one can turn to the
dependency of single oscillatory element frequency on cou-
pling with the passive element. If, for example, these depen-
dencies for different individual frequencies of oscillatory el-
ement have an intersection point then it is possible to obtain
the synchronization threshold to be equal zero tuning the
coupling with passive element.

The second part of the paper dealt with the influence of
passive elements on the wave dynamics of oscillatory ele-
ments, namely, �i� wave conduction velocity, �ii� wave am-
plitude, and �iii� synchronization frequency. It was obtained
that the key parameter defining the character of passive el-
ement’s impact in this case is the steady state of this passive
element or, speaking in terms of cardiac dynamics modeling,
the resting potential of fibroblast Erest. For small values of
Erest, for example −60 mV, it was shown that the wave con-
duction velocity as well as the synchronization frequency
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FIG. 17. Voltage snapshots of the lattice in the case of dpf =0 for four values of NF /N�0,0.075,0.15,0.2.
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decrease with the increase of passive elements impact. For
the high values of the resting potential, for example,
−20 mV, the completely opposite situation is observed. Be-
sides, in every observed case the introduction of passive el-
ements leads to the decrease in the oscillation amplitude in
the system and eventually to the oscillation death effect oc-
currence. The results obtained in this paper were compared
with the data of real biological experiments and demonstrate
a good agreement with them.
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